Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation.

نویسندگان

  • Cécile Faurie
  • Matej Rebersek
  • Muriel Golzio
  • Masa Kanduser
  • Jean-Michel Escoffre
  • Mojca Pavlin
  • Justin Teissie
  • Damijan Miklavcic
  • Marie-Pierre Rols
چکیده

BACKGROUND Electroporation is a physical method used to transfer molecules into cells and tissues. Clinical applications have been developed for antitumor drug delivery. Clinical trials of gene electrotransfer are under investigation. However, knowledge about how DNA enters cells is not complete. By contrast to small molecules that have direct access to the cytoplasm, DNA forms a long lived complex with the plasma membrane and is transferred into the cytoplasm with a considerable delay. METHODS To increase our understanding of the key step of DNA/membrane complex formation, we investigated the dependence of DNA/membrane interaction and gene expression on electric pulse polarity and repetition frequency. RESULTS We observed that both are affected by reversing the polarity and by increasing the repetition frequency of pulses. The results obtained in the present study reveal the existence of two classes of DNA/membrane interaction: (i) a metastable DNA/membrane complex from which DNA can leave and return to external medium and (ii) a stable DNA/membrane complex, where DNA cannot be removed, even by applying electric pulses of reversed polarity. Only DNA belonging to the second class leads to effective gene expression. CONCLUSIONS The life-time of DNA/membrane complex formation is of the order of 1 s and has to be taken into account to improve protocols of electro-mediated gene delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-10: Sperm Mediated Gene Transfer Using Adjuvant Preserving Fertility for Production of Transgenic Chicken Expressing

Background: Low uptake of exogenous DNA by sperm and reduced number of fertilized oocyte by transfected sperm are the major obstacles for progression of sperm mediated gene transfer. Therefore, the modification of sperm mediated gene transfer procedure needs to be required. The purpose of this study was to evaluate the efficiency of FuGene 6 compare to lipofection in transfection medium for int...

متن کامل

Providing a mathematical model for measuring the expression of GUS gene was transferred temporarily through xylem vessels using RT-PCR and probe Gold nanoparticles

Gene transfer to plants and the production of transgenic plants with various purposes, such as improving the performance and quality, resistance to pests, diseases, etc., and of great importance are carried out Gene transfer to plants performs to evaluate the transient and permanent gene expression. Transient expression is quick, easy and simple and is not influenced by position effect compare ...

متن کامل

Providing a mathematical model for measuring the expression of GUS gene was transferred temporarily through xylem vessels using RT-PCR and probe Gold nanoparticles

Gene transfer to plants and the production of transgenic plants with various purposes, such as improving the performance and quality, resistance to pests, diseases, etc., and of great importance are carried out Gene transfer to plants performs to evaluate the transient and permanent gene expression. Transient expression is quick, easy and simple and is not influenced by position effect compare ...

متن کامل

Promoter Methylation and Gene Expression in Human CD34+ Stem Cells Derived Erythroid Lineage by MicroRNA

Background: Stem Cell differentiation is a process composed of vast variety of factors which are controlled by a network of certain mechanisms. This study aims to determine the possible role of DNA methylation, a potent regulator of VHL, ECAD and RUNX3 genes during Erythroid differentiation driven by miR-451. Materials and Methods: To determine the methylation status of promoters and the e...

متن کامل

Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line

Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of gene medicine

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2010